请在 下方输入 要搜索的题目:

165Question#165:A data scientist is using the Amazon SageMaker Neural Topic Model(NTM)algorithm to build a model thatRecommends tags from blog posts.The raw blog post data is stored in an Amazon S3 bucket in JSON format.During model evaluation,the dataScientist discovered that the model recommends certain stopwords such as"a,""an,"and"the"as tags to certain blog posts,along with a few rareWords that are present only in certain blog entries.After a few iterations of tag review with the content team,the data scientist notices that the rareL rates from rentWords are unusual but feasible.The data scientist also must ensure that the tag recommendations of the generated model do not include theStopwords.What should the data scientist do to meet these requirements?


A、UsetheAmazonComprehendentityrecognitionAPIoperations.Removethedetectedwordsfromtheblogpostdata.ReplacetheblogPostdatasourceintheS3bucket.
B、RuntheSageMakerbuilt-inprincipalcomponentanalysis(PCA)algorithmwiththeblogpostdatafromtheS3bucketasthedatasource.ReplacetheblogpostdataintheS3bucketwiththeresultsofthetrainingjob.
C、UsetheSageMakerbuilt-inObjectDetectionalgorithminsteadoftheNTMalgorithmforthetrainingjobtoprocesstheblogpostdata.
D、RemovethestopwordsfromtheblogpostdatabyusingtheCountVectorizerfunctioninthescikit-learnlibrary.ReplacetheblogpostDataintheS3bucketwiththeresultsofthevectorizer.

发布时间:2025-07-01 20:39:55
推荐参考答案 ( 由 搜搜题库网 官方老师解答 )
联系客服
答案:
专业技术学习
用户信息
没有账号?点我注册
专业技术学习
登录 - 搜搜题库网
立即注册
注册 - 搜搜题库网
验证码
立即登录